Site Characterization for CO₂ Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

DE-FE0001910

Peter E. Clark
University of Alabama

Presented to National Energy Technology Laboratory

Outline

- Goals and Objectives
- Performance Period, Budget
- Project Team
 - Roles and responsibilities
 - Project organization
 - Facilities and other resources
- Background
 - Workplan
 - SOPO Tasks and Deliverables
- Supportive Technical Details
- Schedule and Milestones
- Project Status
- Summary

Goals and Objectives

- Goals
 - Determine the CO₂ storage capacity of multiple stacked saline formations in the Mississippian-Pennsylvanian section of the Warrior Basin of Alabama
 - Assess the risks associated with geologic carbon storage in these sections of the Black Warrior basin
 - Develop a regional plan for carbon sequestration

Goals and Objectives

- Objectives
 - Shoot 2-D seismic profiles
 - Drill 4000 ft exploratory well at Plant Gorgas
 - Core reservoirs and seals
 - Quantify the target reservoir properties using
 - Advanced petrophysical and geophysical techniques
 - Inject/well testing
 - Zone integrity testing using mini-fracs both in the reservoir and seals
 - Laboratory analysis of mineralization
 - Reservoir simulation
 - Develop a best practices manual
 - Leave infrastructure at the plant

Performance Period and Budget

- Performance Period
 - December 8, 2009 to December 7, 2012
 - Divided into three equal budget periods
- Budget Summary
 - Total project cost \$6,538,621
 - Government share \$4,849,924
 - Cost Share \$1,688,697 (26%)
 - Cost share breakdown
 - UA, GSA, Rice University, Southern Company 45%
 - Service providers 55%

- Project Team
 - Lead University of Alabama
 - Project management
 - Well drilling and completion
 - Reservoir simulation
 - Geophysics
 - Geological characterization and modeling Geological Survey of Alabama
 - Mineralization Rice University
 - Laboratory studies
 - Modeling

- Lead
 - Peter Clark P.I. Department of Chemical and Biological Engineering
 - Background
 - Well drilling and completions
 - Well stimulation using fracturing and acidizing
 - Rheology
 - Slurry transport
 - Flow in porous media
 - Role/Responsibilities
 - Overall project management
 - Drilling, completion and well testing

- Eric Carlson CoP.I. Department of Chemical and Biological Engineering
 - Background
 - Ph.D. Petroleum Engineering
 - Reservoir modeling
 - Reservoir simulation
 - Reservoir simulator development
 - Well testing
 - High performance computing
 - Roles/Responsibilities
 - Develop the reservoir model (in conjunction with GSA)
 - Develop a reservoir simulator for studying both short and long-term effects of CO₂ injection
 - Integrate mineralization models with reservoir models
 - Analyze well test data

Andrew M. Goodliffe

- Chief or co-chief scientist for 10 large scale geophysical experiments
 - Gravity, magnetics, seafloor mapping, seismic reflection, refraction
 - Lead scientist for approximately 8 large-scale seismic reflection experiments (typically more than one month in duration)
- Global field experience ranging from the Arctic in the winter to the Afar Desert in the summer
- Extensive experience in seismic survey design and seismic reflection data acquisition
- Extensive experience in the processing and interpretation of seismic reflection data
 - Includes teaching short courses for the Incorporated Research Institutes for Seismology and Exxon-Mobil
- · Shipboard geophysicist for the Ocean Drilling Program in Papua New Guinea
 - Acquisition of vertical seismic profile data and check shot data, creation of synthetic seismic profiles for numerous well
- Site Survey Panel member for the International Ocean Drilling Program (2010-2013
 - Assessment of geophysical data used to support proposed drill sites around the world (riser and non-riser)

- Andrew M. Goodliffe (cont.)
 - Roles/Responsibilities
 - Manage the acquisition of geophysical data
 - Analyze geophysical data
 - Integrate geophysical information into a geologic model of the reservoir

- Jack Pashin, Director, Energy Investigations Program
- Responsibilities
 - Regional significance
 - Geophysical characterization
 - Geologic model of the reservoir
 - Capacity estimates
 - Containment analysis

- Mason Tomson, Rice University
 - Thirty years of experience in oilfield brine precipitation reactions
- Roles
 - Short and long-term studies of carbon dioxide interactions with reservoir rocks and fluids
 - Modeling of the interaction of carbon dioxide with reservoir rocks and fluids

Background — Region

- Black Warrior basin of Alabama contains two major coal-fired power plants
 - William C. Gorgas (7.53 Mt)
 - James H. Miller, Jr (19.92 Mt)
- These plants serve the Tuscaloosa — Birmingham corridor
- There are significant potential storage in coal seams in the basin (6 years)

Background — Region

Background — Region

Gorgas plant property

Background — Plant Gorgas

• 1,400 MW plant

Background

Stacked storage opportunities

Storage Capacity

Tuscumbia Limestone * Fort Payne Chert Devonian and older

^{**} Shallower than 2,480 feet at the site.

Characterization

- Geophysical
- Geological
- Reservoir testing
- Reservoir modeling
- Long term storage modeling

Characterization — Overview

- Compile existing data to obtain an initial geologic framework
- The nearest control well is five miles away
- Generate new data using
 - Seismic reflection studies
 - Vertical seismic profiling
 - Borehole gravity
 - Seismic monitoring during injection
 - Well logs
 - Extensive coring of reservoir and seal rock
 - Well testing
 - Geologic modeling
 - Reservoir modeling
 - Long term storage testing and modeling

Characterization — Existing Information

• Regional Stratigraphy

Characterization — Existing Information

• Tuscumbia Structure

Characterization — Existing Information

- A comprehensive ArcInfo database has been put together for the area in the vicinity of the Gorgas power plant
 - Detailed geological map
 - Well information (down-hole well data is currently being digitized)
 - Geographic information includes land-use, roads, digital elevation models and much more.
- More information will be added to this as the project progress

Characterization — Seismic Studies

- Profile length of 5 miles
 - Collected along route 269
- Receiver interval of 220 foot
- Shot interval of 440 foot
- Radio telemetry used to avoid long lengths of cable
- Maximum offset of 26,400 foot
- Vibroseis and explosive sources under consideration
 - Explosive source would be 1-2.2 pounds of pentolite in a 20 foot hole
- 4-5 days to complete
- Final vendor to be determined
 - In process of discussing details with Boone Exploration Inc.

Characterization — Seismic Studies

- Seismic Reflection Data Processing
 - Seismic reflection data will be processed using ProMAX
 - Industry standard processing package produced by Haliburton
 - Standard processing steps (geometry through migration) will be completed within one month of data acquisition
 - Detailed processing will follow
 - E.g. pre-stack depth migration, amplitude variations with offset (AVO)
 - Seismic interpretation will be carried out using Kingdom Suite
 - Interpretation will include detailed attribute analysis (a Ph.D. student is being recruited who specializes in this area)
 - Interpreted (and depth converted) seismic reflection product will be a key input for reservoir simulation

- Conventional seismic reflection data is in time
- Well data is in depth
- Ultimately we want to tie the two together and create a time-depth conversion function
 - Advanced seismic processing (i.e. pre-stack depth migration) yield a depth sections. However, this may not necessarily match the well data
 - Synthetic seismic data (derived from well velocity and density data)
 - Use downhole velocity/density data to create a reflection coefficient series that can be convolved with a known seismic signal to create a synthetic seismogram
 - Synthetic seismogram (depth) used to refine depth conversion of real seismic data (time) – example on next slide

- Another (and better) method to calibrate depth conversion of seismic reflection data frequency content of a VSP better matches the seismic data
- Seismic source at the surface, receivers downhole
- Creates a high resolution seismic image of the area in the immediate vicinity of the borehole
- Multiple offset VSPs provide images at greater distance from wells
- Pre- and post-injection VSPs used to detect changes in the area around the well
- Cost sharing agreements with both Haliburton and Schlumberger to complete this work

Vertical Seismic Profile (VSP) Schematic

- Borehole Gravity
 - Used to examine the density, porosity, and heterogeneity of rock at distances beyond the bore hole that cannot be achieved using standard geophysical logging tools
 - Measurements will be taken at 10-foot intervals in saline reservoir zones and at 40-foot intervals in select areas outside these zones.
 - Four repeat measurements at each station in the reservoir zones will maximize accuracy
 - Cost-sharing agreement in place with Micro-g LaCoste

- Seismic Monitoring During Injection
 - Detection of minor flow induced rock failure in the subsurface
 - Geophones cemented in shallow boreholes around the test well
 - Helps determine if injection will lead to significant seismicity and cross-formational flow during commercial sequestration operations
 - Cost-sharing agreement in place with Pinnacle (a division of Haliburton)

Characterization — Geology

- A 4000 ft well will be drilled and cored through potential injection zones and seals
- Cores will be analyzed and correlated with logging data
- Permeability and porosity will be measured
- A geologic model of the reservoir will be built
- This model will be used in reservoir simulation modeling

Characterization — Well Logging

- A cost sharing agreement with Schlumberger will allow us to run a full suite of logs
 - Triple combo
 - Lithology and continuous permeability
 - Sonic, stress anisotropy and rock strength
 - Formation structure, stratigraphy, and faulting and fractures
- In addition, cement bond logs will be run

Characterization — Injection Test

- Minifrac tests
 - Step-rate tests will be used to measure break down pressures and downhole permeability
- Injection testing
 - Large volume water injections into potential zones
 - Downhole pressure measurements during and after injection

Characterization — Mineralization

- \bullet Injected CO_2 interacts with the formation and formation fluids in complex ways
- Liquid CO₂ is less dense than the brines found in the target saltwater zones
- The standard picture of the injected fluid is a CO₂ layer floating on top of the reservoir fluids with the interactions occurring at the boundaries
- Understanding the chemistry of these interactions is important to understanding the long term storage mechanisms
- Mineralization studies undertaken as part of this project will help to understand the processes

Characterization — Mineralization

- Work will include
 - Experimental work
 - Equilibrium
 - Kinetics
 - Mass transport
 - Long term studies
 - Simulation
 - Rice University has a brine chemistry simulator that will be extended to include the data developed in the experimental work
 - Work will be initiated to include the results of these simulations into the reservoir simulator

Reservoir Simulation

- The reservoirs included in this study are not simple
- They consist of sandstone and limestone zones separated by marine shales
- A reservoir simulation model will be build using the geologic model developed in this work
- This simulator will be used to model injection and storage in the Black Warrior basin
- Simulations will be done on a coarse and fine scale
- The coarse scale simulations will be on the basin level
- Fine scale simulations will cover a more limited area

Reservoir Simulation

- Fine-Scale Simulation will:
 - Investigate the storage capabilities of the saline zones under a variety of injection scenarios
 - Assess geochemical interactions among rock, brine, and CO₂, including the dissolution of CO₂ in formation water.
 - Use fine grids with many components
 - Be based on fully coupled formulations
 - Relatively short time scales

Reservoir Simulation

- Large-Scale Simulation:
 - Will assess macroscopic CO₂-plume-migration tendencies within the basin under multiple injection scenarios.
 - Possible very long time scales
 - Probably not so many components

Best Practices Manual

- Once the study is complete we will sort through the information generated to determine which tests are the most important
- Using this, a Best Practices Manual will be developed that can be used in future projects to minimize the efforts needed to characterize a reservoir for potential carbon dioxide injection

Project Workplan/SOPO Project Tasks

- Task 1 Project management and planning
- Task 2 Regional Significance Studies
 - Subtask 2.1 Geologic framework
 - Subtask 2.2 Capacity and injectivity assessment
- Task 3 Test Site characterization
 - Subtask 3.1 Site design, development and characterization
 - Subtask 3.1.1 Site selection, planning, and design
 - Subtask 3.1.2 Conduct 2-D seismic survey
 - Subtask 3.1.3 Well location preparation, drilling and coring
 - Subtask 3.1.4 Well characterization completion and shut-in
 - Subtask 3.2 Injectivity and capacity studies
 - Subtask 3.3 Geophysical characterization
 - Subtask 3.4 Reservoir simulation

Project Workplan/SOPO Project Tasks

- Task 4 Containment analysis
 - Subtask 4.1 Stratigraphic containment
 - Subtask 4.2 Dissolution and mineralization studies
- Task 5 Site characterization summary analysis
 - Subtask 5.1 Site selection criteria
 - Subtask 5.2 Risk assessment
- Task 6 Outreach and technology transfer

Deliverables

- Task 1.0 Project Management Plan
- Task 1.0 Project Management Plan Milestones including:
 - Submit Site Characterization Plan
 - Notification to DOE Project Manager that reservoir data collection has been initiated
 - Notification to DOE Project Manager that subcontractors have been identified for drilling/field service operations
 - Notification to DOE Project Manager that field service operations have begun at the project site
 - Notification to DOE Project Manager that activities to populate database with geologic characterization data has begun
 - Notification that characterization well has been drilled
 - Notification to DOE Project Manager that well logging has been completed
 - Notification to DOE Project Manager that activities on the lessons learned document on site characterization have been initiated

Deliverables

- Task 3.0 Site Characterization Plan with Preliminary Well Bore Management Plan
- Task 5.0 Best Practices Manual for Site Characterization
- Task 5.0 Well Bore Management Plan
- Task 6.0 Open House Highlighting Project at the Study Field Site by Approximately June 2011
- Task 6.0 − Project Website

Schedule

	WBS	Task, Subtask, or Milestone Name	Cost (\$1000 DOE/Share)	Duration	Start	Finish
1	1	Project Management and Planning	200 / 50	784 days	Tue 12/8/09	Fri 12/7/12
2		Site characterization plan		36 days	Fri 12/11/09	Fri 1/29/10
3	3	Submit site caracterization plan		0 days	Fri 3/5/10	Fri 3/5/10
4		Initiate subcontractor selection		0 days	Mon 1/4/10	Mon 1/4/10
5	5	Subcontractor identified for drilling/field service		0 days	Fri 6/25/10	Fri 6/25/10 🔻
6		Close test site		84 days	Tue 8/14/12	Fri 12/7/12
7	2	Regional Significance		784 days?	Tue 12/8/09	Fri 12/7/12
8	2.1	Geologic Framework		784 days?	Tue 12/8/09	Fri 12/7/12
9		Initiate core testing		1 day	Fri 12/10/10	Fri 12/10/10
(2.2	Capacity and Injectivity Asssessment		392 days?	Thu 4/1/10	Fri 9/30/11
•		Initiate capacity estimation		0 days	Wed 3/31/10	Wed 3/31/10
2		Geological characterization completed		0 days	Mon 8/15/11	Mon 8/15/11
	3	☐ Test Site Characterization		784 days?	Tue 12/8/09	Fri 12/7/12
4	3.1	Site Design and Development		209 days?	Tue 12/8/09	Fri 9/24/10
E		Initiate site operations		0 days	Fri 9/24/10	Fri 9/24/10
E		Initiate reservoir data collection	7	0 days	Mon 8/2/10	Mon 8/2/10
ī		Wells drilled and completed		0 days	Fri 2/18/11	Fri 2/18/1
ξ	8.5	Well logging completed		0 days	Fri 2/25/11	Fri 2/25/11
ç	3.2	Injectivity and Capacity		647 days?	Tue 12/8/09	Wed 5/30/12
):		Injection and sampling complete		0 days	Mon 8/15/11	Mon 8/15/11
	3.3	Geophysical Characterization		647 days?	Tue 12/8/09	Wed 5/30/12
2		Completion of geophysical testing		0 days	Fri 9/30/11	Fri 9/30/11
1	3.4	Simulation		652 days	Tue 12/8/09	Wed 6/6/12
2		Initiate simulation model		0 days	Mon 2/1/10	Mon 2/1/10
E		First version simulation framework		0 days	Fri 8/13/10	Fri 8/13/10
Œ		Coupled simulation ready		0 days	Fri 8/13/10	Fri 8/13/10
5		Revised simulation framework		0 days	Mon 8/15/11	Mon 8/15/11
3.5		Simulation with field data		0 days	Fri 12/7/12	Fri 12/7/12
ec .	4			784 days?	Tue 12/8/09	Fri 12/7/12
(41	Stratigraphic Containment		326 days?	Fri 12/31/10	Fri 3/30/12
2	4.2	Dissolution and Mineralization		784 days?	Tue 12/8/09	Fri 12/7/12
	7.2	Revised reactive transport models		345 days	Mon 8/15/11	Fri 12/7/12
1	5	Summary Analysis		784 days?	Tue 12/8/09	Fri 12/7/12
4	5.1	Site Selection Criteria		348 days?	Wed 6/1/11	Fri 9/28/12
ž.	5.2	Risk Assessment		784 days?	Tue 12/8/09	Fri 12/7/12
Æ	6	Technology Transfer		784 days?	Tue 12/8/09	Fri 12/7/12
5	0	Initiate database entry	1	0 days	Mon 4/4/11	Mon 4/4/11
15		Simulation framework available to public		84 days	Tue 8/14/12	Fri 12/7/12
35	14	Initiate lessons learned document		0 days	Fri 6/1/12	Fri 6/1/12

Milestones

		Planned	Actual	
		Completion	•	
ID	Milestone	Date	on Date	Validation
	FOA Milestone: Updated			
4	Project Management Plan	03/05/10		
	HQ Milestone: Kick-off			
5	Meeting Held	03/31/10	02/03/10	
	FOA Milestone: Submit Site			
6	Characterization Plan	03/05/10		
	HQ Milestone: Semi-Annual			
	Progress Report on data			
	availability and field			
7	contractors	09/30/10		
	HQ Milestone: Annual Review			
8	Meeting attended	03/31/11		
	HQ Milestone: Annual Review			
9	Meeting attended	03/30/12		
	FOA Milestone: Notification			
	to Project Manager that			
	reservoir data collection has			
12	been initiated	08/02/10		
	HQ Milestone: Begin			
	collection of formation			
	information from geologic			
13	surveys and private vendors	06/30/10		
	FOA Milestone: Notification			
	to Project Manager that			
	subcontractors have been			
	identified for drilling/field			
18	service operations	06/25/10		

		Completion Completion		
ID	Milestone	Date	Date	Validation
	FOA Milestone: Notification			
	to Project Manager that			
	field service operations have			
19	begun at the project site	09/24/10		
	FOA Milestone: Notification			
	to Project Manager that			
	characterization wells have			
20	been drilled	02/18/11		
	FOA Milestone: Notification			
	to Project Manager that well			
21	logging has been completed	02/25/11		
	HQ Milestone: Establish			
	database links to NATCARB			
25	and Regional Partnerships	12/31/10		
	FOA Milestone: Notification			
	to Project Manager that			
	activities to populate			
	database with geologic			
	characterization data has			
26	begun	04/04/11		
	FOA Milestone: Notification			
	to Project Manager that			
	actvities on the lessons			
	learned document on site			
	characterization have been			
27	initiated	06/01/12		

Planned

Actual

Project Status

- Subcontracts with Rice University and the Geological Survey of Alabama have been sent out
- Three students in Chemical Engineering and one in Geology have joined the project. In addition, an offer has been extended to another student.
- Background data gathering has commenced.
- The Gorgas site has been visited and a drilling site selected.

Drilling Site

Drilling Site

GPS 33.6499167- 87.196472

Project Summary

- Goals
 - Determine the CO₂ storage capacity of multiple stacked saline formations in the Mississippian-Pennsylvanian section of the Warrior Basin of Alabama
 - Assess the risks associated with geologic carbon storage in these sections of the Black Warrior basin
 - Develop a regional plan for carbon sequestration
- Performance Period
 - December 8, 2009 to December 7, 2012
 - Divided into three equal budget periods
- Budget Summary
 - Total project cost \$6,538,621
 - Government share \$4,849,924
 - Cost Share \$1,688,697 (26%)
- Students have been added to the project
- Initial data collection has commenced
- A drilling site has been selected